Abstract

Zidovudine (3'-azido-3'-deoxythymidine, AZT), administered to pregnant women alone or in combination with other antiretroviral drugs, greatly reduces the mother-to-child transmission of HIV-1. The potential genotoxicity of these molecules is underestimated and wide-ranging evaluation of its biological and clinical consequences is required. We investigated the nuclear organization of constitutive heterochromatin, a major domain participating in epigenetic regulation, in uninfected infants born to HIV-1-infected mothers treated with zidovudine and/or other nucleoside reverse transcriptase inhibitors (NRTIs) during pregnancy. We studied the organization of chromosome 1 heterochromatin (1q12) in peripheral leukocytes of 25 HIV-1-uninfected children (newborn to 9 years old): children born to HIV-1-infected mothers exposed to zidovudine and/or other NRTIs (n=15), children born to HIV-1-infected mothers not exposed to any NRTIs (n=6) and children born to HIV-1-uninfected mothers (n=4). Results differed significantly between NRTI-exposed and -unexposed children. By contrast, there was no difference between NRTI-unexposed children born to HIV-1-infected mothers and children born to HIV-uninfected mothers. The anomaly persisted in lymphocytes cultured for 48 h. There was no evidence of abnormal DNA methylation, a major feature of constitutive heterochromatin and associated with the loss of its structure. In a complementary sample of children, analysis of chromosome 11 and 16 heterochromatin suggests that the defect affects most of the other heterochromatic sites of the human genome. The heterochromatin defect persists long after the end of the exposure and appears in leukocytes of both myeloid and lymphoid lineages, suggesting that haematopoietic stem cells are affected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.