Abstract

BackgroundThe human gut microbiota directly affects human health, and its alteration can lead to gastrointestinal abnormalities and inflammation. Rett syndrome (RTT), a progressive neurological disorder mainly caused by mutations in MeCP2 gene, is commonly associated with gastrointestinal dysfunctions and constipation, suggesting a link between RTT’s gastrointestinal abnormalities and the gut microbiota. The aim of this study was to evaluate the bacterial and fungal gut microbiota in a cohort of RTT subjects integrating clinical, metabolomics and metagenomics data to understand if changes in the gut microbiota of RTT subjects could be associated with gastrointestinal abnormalities and inflammatory status.ResultsOur findings revealed the occurrence of an intestinal sub-inflammatory status in RTT subjects as measured by the elevated values of faecal calprotectin and erythrocyte sedimentation rate. We showed that, overall, RTT subjects harbour bacterial and fungal microbiota altered in terms of relative abundances from those of healthy controls, with a reduced microbial richness and dominated by microbial taxa belonging to Bifidobacterium, several Clostridia (among which Anaerostipes, Clostridium XIVa, Clostridium XIVb) as well as Erysipelotrichaceae, Actinomyces, Lactobacillus, Enterococcus, Eggerthella, Escherichia/Shigella and the fungal genus Candida.We further observed that alterations of the gut microbiota do not depend on the constipation status of RTT subjects and that this dysbiotic microbiota produced altered short chain fatty acids profiles.ConclusionsWe demonstrated for the first time that RTT is associated with a dysbiosis of both the bacterial and fungal component of the gut microbiota, suggesting that impairments of MeCP2 functioning favour the establishment of a microbial community adapted to the costive gastrointestinal niche of RTT subjects. The altered production of short chain fatty acids associated with this microbiota might reinforce the constipation status of RTT subjects and contribute to RTT gastrointestinal physiopathology.Electronic supplementary materialThe online version of this article (doi:10.1186/s40168-016-0185-y) contains supplementary material, which is available to authorized users.

Highlights

  • The human gut microbiota directly affects human health, and its alteration can lead to gastrointestinal abnormalities and inflammation

  • We characterized for the first time the intestinal microbiota, both bacterial and fungal, in subjects affected by Rett syndrome (RTT) in order to investigate the implication of gut microorganisms and their metabolism on RTT gastrointestinal physiology evaluating how the constipation status may affect the composition of the gut microbiota in RTT subjects

  • RTT is associated with mild intestinal inflammation We analysed the inflammatory status and GI abnormalities in a cohort of 50 RTT subjects by measuring the erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), serum IgA and faecal calprotectin (Additional file 1: Table S1)

Read more

Summary

Introduction

The human gut microbiota directly affects human health, and its alteration can lead to gastrointestinal abnormalities and inflammation. Rett syndrome (RTT), a progressive neurological disorder mainly caused by mutations in MeCP2 gene, is commonly associated with gastrointestinal dysfunctions and constipation, suggesting a link between RTT’s gastrointestinal abnormalities and the gut microbiota. The gut microbiota may modulate CNS activities through neural, endocrine, metabolic and immune pathways [15] affecting complex physiological and behavioural states of the host [15, 16] so it is possible to hypothesize gut microbiota alterations in RTT as occur in ASDs. Supported by the increasing appreciation of the gut-microbiome-brain axis, we asked whether MeCP2 impairments in RTT might affect the composition of the gut microbiota resulting in an eventual intestinal dysbiosis in RTT subjects. We characterized for the first time the intestinal microbiota, both bacterial and fungal, in subjects affected by RTT in order to investigate the implication of gut microorganisms and their metabolism on RTT gastrointestinal physiology evaluating how the constipation status may affect the composition of the gut microbiota in RTT subjects

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call