Abstract

The extensive production and usage of nanoparticles with ultimate disposal in the environment leads to unintentional exposure of non-target environmentally beneficial bacteria thereby posing a serious threat to the native soil inhabitants. Soil microflora is an important link in the biogeochemical cycling of nutrients, affecting ecosystem functioning and productivity. This study evaluates the effect of one of the widely used nanoparticles, zinc oxide on two predominant soil bacteria, Gram-positive Bacillus subtilis and Gram-negative Pseudomonas aeruginosa with respect to their biocatalytic activities. Growth profiles of these bacteria in the presence of zinc oxide nanoparticles (ZnONPs) at a concentration of 20 ppm exhibited a prolonged lag phase in B. subtilis, whereas no significant effect was observed in the case of P. aeruginosa even at 200 ppm. Interestingly, the enzymatic profile of both the organisms was affected at non-lethal ZnONPs concentrations. The most pronounced effect was on the enzymes associated with amylolytic activity, denitrification and urea degradation wherein total inhibition of activity was noted in B. subtilis. The enzyme activities were lowered in the case of P. aeruginosa. The results presented here reiterate a critical need for exposure assessment and risk characterization of nanomaterial disposal on soil microflora while formalizing waste management strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call