Abstract

A prophylactic vaccine with high efficacy and low cost is urgently needed for global control of HCV infection. Induction of broadly neutralizing antibodies against most HCV genotypes has been challenging due to the antigenic diversity of the HCV genome. Here, we refined a high-yield subunit HCV vaccine that elicited broadly neutralizing antibody responses in preclinical trials. We found that soluble HCV E2 protein (sE2) produced in insect cells is distinctly glycosylated and is more immunogenic than sE2 produced in mammalian cells, suggesting that glycosylation patterns should be taken into consideration in efforts to generate antibody-based recombinant vaccines against HCV. We further showed that sE2 vaccination confers protection against HCV infection in a genetically humanized mouse model. Thus, our work identified a promising broadly protective HCV vaccine candidate that should be considered for further preclinical and clinical development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.