Abstract

BackgroundDisruptions in circadian rhythms are associated with an increased risk for bipolar disorder. Moreover, studies show that the circadian protein CLOCK (circadian locomotor output cycles kaput) is involved in regulating monoaminergic systems and mood-related behavior. However, the molecular and synaptic mechanisms underlying this relationship remain poorly understood. MethodsUsing ex vivo whole-cell patch-clamp electrophysiology in ClockΔ19 mutant and wild-type mice we characterized alterations in excitatory synaptic transmission, strength, and intrinsic excitability of nucleus accumbens (NAc) neurons. We performed protein crosslinking and Western blot analysis to examine surface and intracellular levels and rhythm of the glutamate receptor subunit, GluA1, in the NAc. Viral-mediated overexpression of Gria1 in the NAc and behavioral assays were also used. ResultsCompared with wild-type mice, ClockΔ19 mice display reduced alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor–mediated excitatory synaptic responses at NAc medium spiny neurons. These alterations are likely postsynaptic, as presynaptic release of glutamate onto medium spiny neurons is unaltered in mutant mice. Additionally, NAc surface protein levels and the rhythm of GRIA1 are decreased in ClockΔ19 mice diurnally, consistent with reduced functional synaptic response. Furthermore, we observed a significantly hyperpolarized resting membrane potential of ClockΔ19 medium spiny neurons, suggesting lowered intrinsic excitability. Last, overexpression of functional Gria1 in the NAc of mutant mice was able to normalize increased exploratory drive and reward sensitivity behavior when mice are in a manic-like state. ConclusionsTogether, our findings demonstrate that NAc excitatory signaling via Gria1 expression is integral to the effects of Clock gene disruption on manic-like behaviors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call