Abstract

Intellectual disability (ID) affects up to 2% of the population world-wide and often coincides with other neurological conditions such as autism spectrum disorders. Mutations in KDM5C cause Mental Retardation, X-linked, Syndromic, Claes-Jensen type (MRXSCJ, OMIM #300534) and are one of the most common causes of X-linked ID. KDM5C encodes a histone demethylase for di- and tri-methylated histone H3 lysine 4 (H3K4me2/3), which are enriched in transcriptionally engaged promoter regions. KDM5C regulates gene transcription; however, it remains unknown whether removal of H3K4me is fully responsible for KDM5C-mediated gene regulation. Most mutations functionally tested to date result in reduced enzymatic activity of KDM5C, indicating loss of demethylase function as the primary mechanism underlying MRXSCJ. Here, we report a novel KDM5C mutation, R1115H, identified in an individual displaying MRXSCJ-like symptoms. The carrier mother’s cells exhibited a highly skewed X-inactivation pattern. The KDM5C-R1115H substitution does not have an impact on enzymatic activity nor protein stability. However, when overexpressed in post-mitotic neurons, KDM5C-R1115H failed to fully suppress expression of target genes, while the mutant also affected expression of a distinct set of genes compared to KDM5C-wildtype. These results suggest that KDM5C may have non-enzymatic roles in gene regulation, and alteration of these roles contributes to MRXSCJ in this patient.

Highlights

  • Intellectual disabilities (ID) affect 1.5–2% of the population world-wide (Leonard and Wen, 2002)

  • KDM5C p.Arg1115His Is Identified in Family UM1

  • Our results showed that the R1115H mutation did not dramatically reduce H3K4me3 demethylase activity on peptides carrying either H3K4me3 alone or both H3K4me3 and K9me3 (Figures 2A,B)

Read more

Summary

Introduction

Intellectual disabilities (ID) affect 1.5–2% of the population world-wide (Leonard and Wen, 2002). Clinical features of ID include significant deficiencies in cognitive function and adaptive behaviors beginning before 18 years of age (American Psychiatric Association, 1994). KDM5C Mutant Alters Gene Regulation are characterized by impaired speech, hindered social development, and repetitive behaviors. X-linked intellectual disability (XLID) has been thought to account for the higher frequency of ID in males compared to females (Chiurazzi et al, 2008). KDM5C is one of the most frequently mutated genes in XLID and estimated to explain approximately 0.7–2.8% of all XLID cases. KDM5C-deficiency is characterized by frequent autistic and aggressive behaviors (Jensen et al, 2005; Ropers and Hamel, 2005) and is currently referred to as Mental Retardation, X-linked, Syndromic, Claes-Jensen type (MRXSCJ: OMIM#300534). The KDM5C gene, located at Xp11.22-p11.21, encodes a histone demethylase, which targets di- and tri-methylated histone H3 lysine 4 (H3K4me and H3K4me3) (Iwase et al, 2007; Tahiliani et al, 2007)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call