Abstract

Living in high-expressed emotion (EE) environments, characterized by critical, hostile, or over-involved family attitudes, has been linked to increased relapse rates among individuals with schizophrenia (SZ). In our previous work (Wang et al., 2023), we conducted the first feasibility study of using functional near-infrared spectroscopy (fNIRS) with our developed EE stimuli to examine cortical hemodynamics in SZ. To better understand the neural mechanisms underlying EE environmental factors in SZ, we extended our investigation by employing functional connectivity (FC) analysis with a graph theory approach to fNIRS signals. Relative to healthy controls (N=40), individuals with SZ (N=37) exhibited altered connectivity across the medial prefrontal cortex (mPFC), left ventrolateral prefrontal cortex (vlPFC), and left superior temporal gyrus (STG) while exposed to EE environments. Notably, while individuals with SZ were exposed to high-EE environments, (i) reduced connectivity was observed in these brain regions and (ii) the left vlPFC-STG coupling was found to be associated with the negative symptom severity. Taken together, our FC findings suggest individuals with SZ experience a more extensive disruption in neural functioning and coordination, particularly indicating an increased susceptibility to high-EE environments. This further supports the potential utility of integrating fNIRS with the created EE stimuli for assessing EE environmental influences, paving the way for more targeted therapeutic interventions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call