Abstract

The neural correlates of major depressive disorder (MDD) remain disputed. In the absence of reliable biological markers, the dysfunction and interaction of neural networks have been proposed as pathophysiological neural mechanisms in depression. Here, we examined the functional connectivity (FC) of brain networks. 51 healthy volunteers (mean age 33.57 ± 7.80) and 55 individuals diagnosed with MDD (mean age 33.89 ± 11.00) participated by performing a resting-state (rs) fMRI scan. Seed to voxel FC analyses were performed. Compared to healthy control (HC), MDD patients showed higher connectivity between the hippocampus and the anterior cingulate cortex (ACC) and lower connectivity between the insula and the ACC. The MDD group displayed lower connectivity between the inferior parietal lobule (IPL) and the superior frontal gyrus (SFG). The current data replicate previous findings regarding the cortico-limbic network (hippocampus – ACC connection) and the salience network (insula - ACC connection) and provide novel insight into altered rsFC in MDD, in particular involving the hippocampus - ACC and the insula - ACC connection. Furthermore, altered connectivity between the IPL and SFG indicates that the processing in higher cognitive processes such as attention and working memory is affected in MDD. These data further support dysfunctional neuronal networks as an interesting pathophysiological marker in depression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call