Abstract
High-alkaline serine proteases have been successfully applied as protein degrading components of detergent formulations and are subject to extensive protein engineering efforts to improve their stability and performance. Dynamics has been suggested to play an important role in determining enzyme activity and specificity and it is therefore of interest to establish how local changes in internal mobility affect protein stability, specificity and performance. Here we present the dynamic properties of the 269 residue serine proteases subtilisin PB92 (Maxacal™) and subtilisin BLS (Savinase™), secreted by Bacillus lentus, and an engineered quadruple variant, DSAI, that has improved washing performance. T1, T2and heteronuclear NOE measurements of the 15N nuclei indicate that for all three proteins the majority of the backbone is very rigid, with only a limited number of residues being involved in local mobility. Many of the residues that constitute the S1 and S4 pockets, determining substrate specificity, are flexible in solution. In contrast, the backbone amides of the residues that constitute the catalytic triad do not exhibit any motion. Subtilisins PB92, BLS and DSAI demonstrate similar but not identical NMR relaxation rates. A detailed analysis of local flexibility indicates that the motion of residues Thr143 and Ala194 becomes more restricted in subtilisin BLS and DSAI. Noteworthy, the loop regions involved in substrate binding become more structured in the engineered variant as compared with the two native proteases, suggesting a relation between altered dynamics and performance. Similar conclusions have been established by X-ray crystallograpic methods, as shown in the accompanying paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.