Abstract

Flavins were extracted from sporangiophores of the lower fungus Phycomyces blakesleeanus and identified by HPLC with fluorescence detection. In the wild-type strain NRRL1555 they were found to be present at the following concentrations: riboflavin (5.5 x 10(-6) M), flavin mononucleotide (FMN) (4.0 x 10(-6) M) and flavin adenine dinucleotide (1.4 x 10(-6) M). The HPLC elution profiles of the wild type were compared to a set of behavioral mutants (genotype mad) with specific defects in their light-transduction pathway. The photoreceptor mutants C109 (madB), C111 (madB) and L1 (madC) had normal amounts of flavins. The most prominent changes were found in single mutants with a defective madA gene which contained about 25% of riboflavin and about 10% of FMN and FAD normally found in the wild type. A hypertropic mutant with a defective madH gene contained instead 80% of riboflavin and 120% of FMN and FAD. The double mutant L52 (madA madC) and the triple mutant L72 (madA madB madC) had normal amounts of FAD and FMN. This indicates that the madC mutation, which itself causes loss of light sensitivity and which affects the near-UV/blue-light receptor (Galland and Lipson, 1985, Photochem. Photobiol. 41, 331-335) functions as a restorer of the flavin content in a genetic madA background. The double mutant L51 (madA madB) had about 40% of FMN and FAD, suggesting that the madB mutation functions as a partial restorer of flavin content. The photogravitropic thresholds (450 nm) reported for the wild type and the madA and madH mutants were positively correlated to the endogeneous concentrations of FMN and FAD.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call