Abstract

ObjectivesCyclin A1 regulates cell cycle activity and proliferation in somatic and germ-line cells. Its expression increases in G1/S phase and reaches a maximum in G2 and M phases. Altered cyclin A1 expression might contribute to clinical symptoms in facioscapulohumeral muscular dystrophy (FSHD).MethodsMuscle biopsies were taken from the Vastus lateralis muscle for cDNA microarray, RT-PCR, immunohistochemistry and Western blot analyses to assess RNA and protein expression of cyclin A1 in human muscle cell lines and muscle tissue. Muscle fibers diameter was calculated on cryosections to test for hypertrophy.ResultscDNA microarray data showed specifically elevated cyclin A1 levels in FSHD vs. other muscular disorders such as caveolinopathy, dysferlinopathy, four and a half LIM domains protein 1 deficiency and healthy controls. Data could be confirmed with RT-PCR and Western blot analysis showing up-regulated cyclin A1 levels also at protein level. We found also clear signs of hypertrophy within the Vastus lateralis muscle in FSHD-1 patients.ConclusionsIn most somatic human cell lines, cyclin A1 levels are low. Overexpression of cyclin A1 in FSHD indicates cell cycle dysregulation in FSHD and might contribute to clinical symptoms of this disease.

Highlights

  • Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant neuromuscular disorder

  • In this article we present evidence of cyclin A1 overexpression at both RNA and protein level in FSHD-1, but not in other muscular dystrophies such as caveolinopathy 3 (CAV 3), dysferlinopathy (DYSF) and four and a half LIM domains protein 1 deficiency (FHL1)

  • We performed microarray analysis in order to look for differences in myotube gene expression in FSHD-1, three other muscular disorders, and in healthy controls

Read more

Summary

Introduction

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant neuromuscular disorder. It is the third most common hereditary muscle disease with an estimated incidence of 1:20,000. There are two types of FSHD: FSHD 1 (classic one) and FSHD-2. Both are clinically identical and the only difference results from genetic background. FSHD-1 is associated with contractions of an integral number of 3.3 kb KpnI (D4Z4) macrosattelite repeats in the subtelomeric region of the long arm of chromosome 4 (4q35). Lemmers et al reported that digenic inheritance of an SMCHD1 (encoding structural maintenance of chromosome flexible hinge domain containing 1) mutation and an FSHD-permissive D4Z4 allele causes FSHD-2 [6]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call