Abstract
The hormone PYY (peptide YY), synthesized by endocrine cells in the pancreas, ileum, colon and stomach has widespread inhibitory effects on gastrointestinal and pancreatic fluid secretion. Transgenic mice expressing a viral oncoprotein under the control of the PYY gene 5'-flanking region develop well-differentiated colonic endocrine tumours producing mainly PYY and enteroglucagon. In the present study, we investigated the expression of AQP4 (aquaporin 4) water channel and H(+)/K(+)-ATPase in stomachs from both control and transgenic mice. Semi-quantitative RT (reverse transcriptase)-PCR showed an increase in the AQP4 transcript compared with control mice. Quantitative Western-blot analysis of stomachs from control and transgenic mice confirmed a significant increase in the 30 kDa AQP4 protein in transgenic mice. In control mice, AQP4 is specifically expressed in the basolateral membrane of gastric parietal cells, located in the basal region of the fundic glands. This particular location suggests that parietal cells in the base region of gastric pits might have a major role in water transport when compared with the more superficial parietal cells. Interestingly, immunofluorescence studies on transgenic mice revealed that the quantitative increase of AQP4 expression was actually due to an increase in the number of AQP4-expressing epithelial cells rather than to a higher expression of AQP4 in parietal cells. In fact, immunofluorescence experiments using the specific antibody raised against the AE2 isoform of Cl(-)/HCO3- exchanger specifically expressed in parietal cells confirmed that the number of parietal cells was comparable in both PYY and control stomachs. Moreover, in transgenic mice, a parallel significant decrease in the expression of H(+)/K(+)-ATPase was observed, as revealed by RT-PCR, quantitative immunoblotting and immunofluorescence. In the present study, we demonstrate that the sustained inhibition of gastric secretion due to tumours producing PYY/enteroglucagon in transgenic mice is associated with an increase in AQP4 expression and a down-regulation of H(+)/K(+)-ATPase in parietal cells that acquire the characteristics of basal parietal cells. The absence of H2 receptors-mediated signalling due to the inhibition of histamine release from ECL (enterochromaffin-like) cells by PYY may be in part responsible for the observed increase in the number of parietal cells expressing AQP4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.