Abstract

Advanced glycation end products (AGEs) are responsible for the complications in type 2 diabetes mellitus (T2DM) patients by acting via its receptor (RAGE). The soluble form of RAGE (sRAGE) prevents the harmful effects of AGE-RAGE signalling. The sRAGE is produced either by alternate splicing (esRAGE) or proteolytic RAGE cleavage by a disintegrin and metalloproteinase 10 (ADAM10). Hence, the study aimed to compare the expression of ADAM10 in peripheral blood mononuclear cell (PBMC), serum sRAGE and esRAGE levels in T2DM patients with and without acute coronary syndrome (ACS). Forty-five T2DM patients with ACS and 45 age, gender and duration of DM-matched T2DM patients without ACS were recruited. Serum sRAGE and esRAGE levels were measured by enzyme-linked immunosorbent assay. The expression of ADAM10 in PBMC was determined by quantitative reverse transcription-polymerase chain reaction. The expression of ADAM10 in PBMC and serum sRAGE levels were significantly lower in T2DM patients with ACS than in T2DM patients without ACS (p < 0.001). Serum sRAGE levels and expression of ADAM10 in PBMC were positively correlated with each other and negatively correlated with markers of cardiac injury and glycaemic status (p < 0.05). Simple logistic regression showed that the models containing the expression of ADAM10 and serum sRAGE level could predict the ACS risk among T2DM patients. ROC analysis showed that both might be used for ACS diagnosis in T2DM patients. Reduced expression of ADAM10 in PBMC might be responsible for lower serum sRAGE levels, predisposing T2DM patients to high ACS risk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call