Abstract
The period (per) and timeless (tim) genes encode interacting components of the circadian clock. Levels and phosphorylation states of both proteins cycle with a circadian rhythm, and the proteins drive cyclic expression of their RNAs through a feedback mechanism that is, at least in part, negative. We report here that a hypophosphorylated mutant PER protein, produced by creating a small internal deletion, displays increased stability and low-amplitude oscillations, consistent with previous reports that phosphorylation is required for protein turnover. In addition, this protein appears to be defective in feedback repression because it is associated with relatively high levels of RNA and high levels of TIM. Transgenic flies carrying the mutant PER protein display a temperature-dependent shortening of circadian period and are impaired in their response to light, particularly to pulses of light in the late night that normally advance the phase of the rhythm. Interestingly, per RNA is induced by light in these flies, most likely because of the removal of the light-sensitive TIM protein, thus implicating a more direct role for TIM in transcriptional inhibition. These data have relevance for mechanisms of feedback repression, and they also address existing models for the differential behavioral response to light at different times of the night.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.