Abstract

Ulcerative colitis (UC) is a chronic inflammatory disorder that affects the colonic epithelium. Epidemiology studies indicate an environmental component is involved in pathogenesis, although the primary changes in the digestive epithelium that cause an uncontrolled inflammatory response are not known. Animal studies have shown that altered endoplasmic reticulum (ER) stress response initiates intestinal inflammation in epithelial tissues, but abnormalities associated with ER stress have not been identified in patients with UC. Using immunoblotting, real-time polymerase chain reaction, immunohistochemistry, and immunofluorescence analyses, we assessed ER stress signaling in uninflammed colonic mucosa from patients with UC and controls. Genome-wide microarray analysis of actively translated polysome-bound messenger RNA was performed using samples of unaffected mucosa from patients with UC, and data were compared with those from controls. Inositol-requiring kinase and activating transcription factor signaling pathways were activated in inactive colonic epithelium from patients with UC; these mediate proinflammatory and regenerative responses. Blocking phosphorylation of the translation initiation factor 2 (eIF2α), which mediates the integrated stress response, deregulated initiation of translation and reduced the numbers of stress granules in colonic epithelial cells from patients with UC. Genome-wide microarray analysis of actively translated, polysome-bound messenger RNA from patients revealed changes in protein translation that altered colonic epithelial barrier function (levels of detoxification and antioxidant enzymes and proteins that regulate the cell cycle, cell-cell adhesion, and secretion), compared with controls. Colonic mucosa samples from patients with UC have defects in the eIF2α pathway that controls protein translation and the cell stress response. This pathway might be investigated to identify new therapeutic targets for patients with UC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.