Abstract

ObjectiveTo investigate whether the brain networks changed in patients with acute peripheral herpes zoster (HZ).MethodsWe reviewed the EEG database in Jianyang People’s Hospital. Patients with acute HZ (n=71) were enrolled from January 2016 to December 2020. Each included subject underwent a ten-minute and 16-channel EEG examination. Five epochs of 10-second EEG data in resting-state were collected from each HZ patient. Five 10-second resting-state EEG epochs from sex- and age-matched healthy controls (HC, n=71) who reported no history of neurological or psychiatric disorders and visited the hospital for routine physical examinations were collected. Brain network and graph theory analysis based on phase locking value parameter and functional ICA were performed using a self-writing Matlab code and the LORETA KEY tool.ResultsCompared with the HC group, the HZ patients showed significant altered brain networks. The graph theory analysis revealed that the clustering coefficient and local efficiency of full band in HZ patients were lower than those in HC group (P<0.05). In beta band, the global efficiency and local efficiency of HZ patients group decreased, compared with healthy group (P<0.05). The functional ICA showed that three components showed significant differences between the two groups. In component 2, HZ patients showed excess superior frontal gyrus (BA10) neuro oscillation in delta band and less medial frontal gyrus (BA 11) neuro oscillation in beta and gamma bands than that in HCs. And for component 3, the alpha band of the HZ patients presented increased neuro activities in superior frontal gyrus (BA 11) and decreased neuro activities in occipital lobe (BA 18). In component 4, the inferior frontal gyrus (BA 47) showed excess activity in the left hemisphere and reduced activity in the right hemisphere in delta band, compared with HC group.ConclusionAltered brain networks exist in resting-state EEG data of patients with acute HZ. The changes of EEG brain networks in HZ patients are characterized by decreased global efficiency and local efficiency in beta band. Moreover, the spontaneous oscillation of some brain regions involving pain management and the connectivity of default mode network changed in HZ patients. Our study provided novel understanding of HZ from an electrophysiological view, and led to converging evidence for treatment of HZ with neural regulation in future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.