Abstract
Dyneins are major components of microtubules. Dynein assembly is modulated by a heterogeneous group of dynein axonemal assembly factors (DNAAFs). The present study analyzes dynein axonemal assembly factor 1 (DNAAF1) and leucine-rich repeat-containing protein 50 (LRRC50), the corresponding encoded protein, in lower motor neurons in spinal cord of sALS postmortem samples and hSOD1-G93A transgenic mice compared with controls. DNAAF1 mRNA is significantly reduced in the anterior horn in sALS, and LRRC50 immunoreactivity is significantly reduced in C-boutons of the remaining motor neurons of the anterior horn, dorsal nucleus of the vagus nerve, and hypoglossal nuclei at terminal stages of ALS. LRRC50 immunoreactivity has a perinuclear distribution in motor neurons in sALS thus suggesting a disorder of transport. The number of LRRC50-/S1R-immunoreactive structures is also significantly decreased in hSOD1-G93A transgenic mice at the age of 90 days (preclinical stages), and the number of motor neurons with LRRC50-immunoreactive structures is significantly reduced in animals aged 150 days (clinical stages). These observations suggest cholinergic denervation of motor neurons as a pathogenic factor in motor neuron disease. LRRC50 protein levels were not detected in human CSF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Neuropathology & Experimental Neurology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.