Abstract

Patterns of multiple amino acid substitutions in the Plasmodium falciparum chloroquine resistance transporter (PfCRT, UniProtKB Q8IBZ9) have previously been shown to mediate chloroquine resistance in P. falciparum malarial parasites. Recent reports suggest that novel mutations in PfCRT may mediate resistance to piperaquine (PPQ), which is used extensively as a partner drug in one prominent artemisinin combination therapy. How these novel PfCRT isoforms might mediate PPQ resistance (PPQR) is not known. Using codon optimization and other previously perfected methods for PfCRT analysis in yeast, we have expressed all known PPQR-associated PfCRT isoforms in Saccharomyces cerevisiae yeast and tested whether these isoforms catalyze PPQ transport. Relationships between relative PPQ and CQ transport are analyzed for these isoforms versus other previously recognized drug resistance-associated PfCRT isoforms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call