Abstract

Here, we have investigated the neurological consequences of restricted inactivation of Otx2 in adult En1 cre/+ ; Otx2 flox/flox mice. In agreement with the crucial role of Otx2 in midbrain patterning, the mutants had a substantial reduction in tyrosine hydroxylase containing neurons. Although the reduction in the number of DAergic neurons was comparable between the SNc and the VTA, we found an unexpected selectivity in the deinnervation of the terminal fields affecting preferentially the ventral striatum and the olfactory tubercle. Interestingly, the mutants showed no abnormalities in exploratory activity or motor coordination. However, the absence of normal DA tone generated significant alterations in DA D1-receptor signalling as indicated by increased mutant striatal levels of phosphorylated DARPP-32 and by an altered motor response to amphetamine. Therefore, we suggest that the En1 cre/+ ; Otx2 flox/flox mutant mouse model represents a genetic tool for investigating molecular and behavioural consequences of developmental neuronal dysfunction in the DAergic system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.