Abstract

Periostin is essential for the integrity and function of the periodontal ligament (PDL), and periostin knockout is related to an enhanced inflammatory status in PDL. High mobility group box 1 (HMGB1), a late inflammatory cytokine, is up-regulated in PDL cells in response to mechanical stress. This study aimed to investigate the effect of periostin deficiency (Pn-/-) on HMGB1 expression in PDL during orthodontic tooth movement. We used 8-week-old male mice homozygous for the disrupted periostin gene and their wild-type (WT) littermates. Tooth movement was performed according to Waldo's method, in which 0.5-mm-thick elastic bands were inserted between the first and second upper molars of anesthetized mice. After 3 days of mechanical loading, mice were fixed by transcardial perfusion of 4% paraformaldehyde in phosphate buffer, and the maxilla was extracted for histochemical analyses. Compared with the WT group, Pn-/- mice showed higher basal expression of HMGB1 in the absence of mechanical loading. Following 3 days of orthodontic tooth movement, the PDL in the compression side of both groups was almost replaced by cell-free hyaline zones, and Pn-/- mice showed a much wider residual PDL than WT mice. In the tension side, the number of HMGB1-positive cells in PDL in both Pn-/- and WT groups increased remarkably without a significant difference between the two groups. Our findings suggest an inhibitory effect of periostin on HMGB1 production by PDL and confirmed the critical role of periostin in integrity of PDL collagen fibrils during orthodontic tooth movement, although mechanical loading is the predominant stimulant of HMGB1 expression relative to periostin deficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call