Abstract

Abstract Whole-brain functional connectivity networks (connectomes) have been characterized at different scales in humans using EEG and fMRI. Multimodal epileptic networks have also been investigated, but the relationship between EEG and fMRI defined networks on a whole-brain scale is unclear. A unified multimodal connectome description, mapping healthy and pathological networks would close this knowledge gap. Here, we characterize the spatial correlation between the EEG and fMRI connectomes in right and left temporal lobe epilepsy (rTLE/lTLE). From two centers, we acquired resting-state concurrent EEG-fMRI of 35 healthy controls and 34 TLE patients. EEG-fMRI data was projected into the Desikan brain atlas, and functional connectomes from both modalities were correlated. EEG and fMRI connectomes were moderately correlated. This correlation was increased in rTLE when compared to controls for EEG-delta/theta/alpha/beta. Conversely, multimodal correlation in lTLE was decreased in respect to controls for EEG-beta. While the alteration was global in rTLE, in lTLE it was locally linked to the default mode network. The increased multimodal correlation in rTLE and decreased correlation in lTLE suggests a modality-specific lateralized differential reorganization in TLE, which needs to be considered when comparing results from different modalities. Each modality provides distinct information, highlighting the benefit of multimodal assessment in epilepsy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call