Abstract

A PET study of patients with Alzheimer's disease (AD) engaged in a delayed match-to-sample face recognition task revealed that performance declines as a function of increasing delay, a pattern accompanied by reduced functional connectivity of prefrontal cortex but increased connectivity of the left amygdala. Here, we characterize the changes in interactions within this amygdalar circuit across the memory delays using structural equation modeling. The magnitude of effective connections was found to be much greater in the patients than in the controls, notably from the left amygdala to left inferior prefrontal cortex, which, in turn, influenced its right homologue. The influence from the amygdala to the left hippocampus, in contrast, was not strong in either group. We interpret this pattern of interactions as possibly reflecting the compensatory recruitment of a dynamic neural network, perhaps involved in implicit emotional processing, in the context of a faulty executive maintenance and retrieval system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.