Abstract
BackgroundEndothelin-1 (ET-1) inhibition of vasopressin (AVP)-stimulated water reabsorption by the inner medullary collecting duct (IMCD) is associated with reduced cAMP accumulation. To determine the effect of ET-1 deficiency, AVP-stimulated cAMP responsiveness was assessed in IMCD from mice with collecting duct-specific deletion of ET-1 (CD ET-1 KO) and from control animals.MethodsCyclic AMP production, adenylyl cyclase (AC) mRNA, and AC protein were measured in acutely isolated IMCD.ResultsCD ET-1 KO IMCD had enhanced AVP-stimulated cAMP accumulation. Inhibition of calcium-stimulated AC using BAPTA did not prevent enhanced AVP responsiveness in CD ET-1 KO IMCD. Factors known to be modified by ET-1, including nitric oxide, cyclooxygenase metabolites, and superoxide did not affect the increased AVP responsiveness of CD ET-1 KO IMCD. Differential V2 receptor or G-protein activity was not involved since CD ET-1 KO IMCD had increased cAMP accumulation in response to forskolin and/or cholera toxin. CD ET-1 KO did not affect mRNA or protein levels of AC3, one of the major known collecting duct AC isoforms. However, the other known major collecting duct AC isoform (AC5/6) did have increased protein levels in CD ET-1 KO IMCD, although AC5 (weak signal) and 6 mRNA levels were unchanged.ConclusionET-1 deficiency increases IMCD AC5/6 content, an effect that may synergize with acute ET-1 inhibition of AVP-stimulated cAMP accumulation.
Highlights
Endothelin-1 (ET-1) inhibition of vasopressin (AVP)-stimulated water reabsorption by the inner medullary collecting duct (IMCD) is associated with reduced cAMP accumulation
AVP was added at a concentration of 1 nM for 10 minutes since this regimen has previously been determined to cause halfmaximal stimulation of cAMP accumulation in IMCD from floxed and CD ET-1 KO animals [7]
It should be noted that 100 pM AVP caused enhanced CD ET-1 KO cAMP accumulation (157 ± 9% of control values, n = 15, p < 0.001)
Summary
Endothelin-1 (ET-1) inhibition of vasopressin (AVP)-stimulated water reabsorption by the inner medullary collecting duct (IMCD) is associated with reduced cAMP accumulation. To determine the effect of ET-1 deficiency, AVP-stimulated cAMP responsiveness was assessed in IMCD from mice with collecting duct-specific deletion of ET-1 (CD ET-1 KO) and from control animals. ET-1 reduces AVP-enhanced water flux in acutely isolated rat cortical collecting tubules [1]. This effect is mediated, at least in part, by protein kinase C (PKC)-sensitive inhibition of adenylyl cyclase activity and is independent of dihydropyridine-type calcium channels and cyclooxygenase metabolites [2,3]. Similar to the cortical collecting tubule, the ET-1 effect is likely through reduction of AVP-stimulated cAMP accumulation [2,6].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.