Abstract

Niemann-Pick type C1 (NPC1) disease is a fatal hereditary disorder characterized by a defect in cholesterol trafficking and progressive neurodegeneration. Although the NPC1 gene has been identified, the molecular mechanism responsible for neuronal dysfunction in brains of patients with NPC1 disease remains unknown. This study demonstrates that the amount of cholesterol within mitochondria membranes is significantly elevated in NPC1 mouse brains and neural cells. In addition, the mitochondrial membrane potential, the activity of ATP synthase, and henceforth the level of ATP are markedly decreased in NPC1 mouse brains and neurons. Importantly, reducing the level of cholesterol within mitochondrial membranes using methyl-beta-cyclodextrin can restore the activity of ATP synthase. Finally, NPC1 neurons show an impaired neurite outgrowth, which can be rescued by exogenous ATP. These results suggest that mitochondrial dysfunctions and subsequent ATP deficiency, which are induced by altered cholesterol metabolism in mitochondria, may be responsible for neuronal impairment in NPC1 disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.