Abstract

Several recent studies have reported a strong association between the cerebellar structural and functional abnormalities and psychiatric disorders. However, there are no studies to investigate possible changes in cerebellar functional connectivity in bipolar disorder. This study aimed to examine the whole-brain functional connectivity pattern of patients with remitted bipolar disorder II, in particular in the cerebellum. A total of 25 patients with remitted bipolar disorder II and 25 controls underwent resting-state functional magnetic resonance imaging and neuropsychological tests. Voxel-wise whole-brain connectivity was analyzed using a graph theory approach: functional connectivity strength. A seed-based resting-state functional connectivity analysis was further performed to investigate abnormal functional connectivity pattern of those regions with changed functional connectivity strength. Remitted bipolar disorder II patients had significantly decreased functional connectivity strength in the bilateral posterior lobes of cerebellum (mainly lobules VIIb/VIIIa). The seed-based functional connectivity analyses revealed decreased functional connectivity between the right posterior cerebellum and the default mode network (i.e. right posterior cingulate cortex/precuneus and right superior temporal gyrus), bilateral hippocampus, right putamen, left paracentral lobule and bilateral posterior cerebellum and decreased functional connectivity between the left posterior cerebellum and the right inferior parietal lobule and bilateral posterior cerebellum in patients with remitted bipolar disorder II. Our results suggest that cerebellar dysconnectivity, in particular distributed cerebellar-cerebral functional connectivity, might be associated with the pathogenesis of bipolar disorder.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call