Abstract

We hypothesize that the age-related degeneration of cytoskeleton in basal forebrain cholinergic neurons renders the NGF-TrkA signaling system non-functional and thereby impairs trophic support. Comparing young (4 months) and aged (28 months) rat brain, we examined immunohistochemically the compartmentalization of phosphorylated Tau protein using antibodies phospho-Tau404 and phospho-Tau231 of the GSK3beta kinase, known to phosphorylate Tau, the neurotrophin NGF, and its receptor P-TrkA. Retrograde labeling of basal forebrain cholinergic cells after injection of fluorogold into multiple sites in cortex and hippocampus revealed a significantly lower number of fluorogold-positive cells in aged brain. Despite a lower density of P-TrkA immunoreactivity in cortex and hippocampus of aged rats, there was no difference in NGF expression. In young animals phospho-Tau404, phospho-Tau231, and GSK3 immunoreactivity was observed mainly in neuronal fibers with lower staining in somata both in cortex and hippocampus. By contrast, Tau and GSK3 labeling were confined to the cell bodies in aged rats. This is confirmation that aging leads to a redistribution of cytoskeletal proteins. Since a somatic localization of phospho-Tau is indicative of cytoskeletal breakdown, we suggest that failure of axonal trafficking may be responsible for the lack of trophic support in aged cholinergic neurons of the basal forebrain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.