Abstract

Trypsinized chicken embryo dermal fibroblasts plated in the presence of cytochalasin B (CB) quickly attached to the substrate and within 24 h obtained an arborized morphology. This morphology is the result of the pushing out of pseudopodial processes along the substrate from the round central cell body. There were no microfilament bundles in the processes of these cells plated in the presence of CB; however, the processes were packed with highly oriented, parallel-aligned intermediate filaments. Only a few scattered microtubules were seen in these processes. These results demonstrated that in CB, cells are capable of a form of movement, i.e., the extension of pseudopodial processes, without the presence of the microfilament structures usually associated with extensions of the cytoplasm and pseudopodial movements. We also found that arborization did not depend on fibronectin since cells plated in CB did not have fibronectin fibers associated with the processes. Chicken fibroblasts transformed with tsLA24A, a Rous sarcoma virus which is temperature sensitive for pp60src, formed arborized cells with properties similar to those of uninfected fibroblasts when plated in the presence of CB at the nonpermissive temperature (41 degrees C). At the permissive temperature for transformation (36 degrees C), the cells attached to the substrate but remained round. These round cells were not only deficient in microfilament bundles but also lacked the highly organized intermediate filaments found in the processes of the arborized cells at 41 degrees C. Although both microfilament bundles and the fibronectin matrix were decreased after transformation with Rous sarcoma virus, neither was involved in the formation of processes in normal cells plated in CB. Therefore, the inability of the transformed cells to form or maintain processes in CB must be the result of another structural alteration in the transformed cells, such as that of the intermediate filaments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.