Abstract

BackgroundLoss or disrupted expression of the FMR1 gene causes fragile X syndrome (FXS), the most common monogenetic form of autism in humans. Although disruptions in sensory processing are core traits of FXS and autism, the neural underpinnings of these phenotypes are poorly understood. Using calcium imaging to record from the entire brain at cellular resolution, we investigated neuronal responses to visual and auditory stimuli in larval zebrafish, using fmr1 mutants to model FXS. The purpose of this study was to model the alterations of sensory networks, brain-wide and at cellular resolution, that underlie the sensory aspects of FXS and autism.ResultsCombining functional analyses with the neurons’ anatomical positions, we found that fmr1−/− animals have normal responses to visual motion. However, there were several alterations in the auditory processing of fmr1−/− animals. Auditory responses were more plentiful in hindbrain structures and in the thalamus. The thalamus, torus semicircularis, and tegmentum had clusters of neurons that responded more strongly to auditory stimuli in fmr1−/− animals. Functional connectivity networks showed more inter-regional connectivity at lower sound intensities (a − 3 to − 6 dB shift) in fmr1−/− larvae compared to wild type. Finally, the decoding capacities of specific components of the ascending auditory pathway were altered: the octavolateralis nucleus within the hindbrain had significantly stronger decoding of auditory amplitude while the telencephalon had weaker decoding in fmr1−/− mutants.ConclusionsWe demonstrated that fmr1−/− larvae are hypersensitive to sound, with a 3–6 dB shift in sensitivity, and identified four sub-cortical brain regions with more plentiful responses and/or greater response strengths to auditory stimuli. We also constructed an experimentally supported model of how auditory information may be processed brain-wide in fmr1−/− larvae. Our model suggests that the early ascending auditory pathway transmits more auditory information, with less filtering and modulation, in this model of FXS.

Highlights

  • Loss or disrupted expression of the Fragile X mental retardation 1 (FMR1) gene causes fragile X syndrome (FXS), the most common monogenetic form of autism in humans

  • These results suggest that fmr1−/− animals have roughly normal baseline neuronal activity and activity correlations at 6 dpf

  • Based on the results presented here and previous work, the thalamus of fmr1−/− animals appears to play an important role in the increased correlations and functional hyper-connectivity found in FXS and, perhaps more broadly, autism spectrum disorder (ASD)

Read more

Summary

Introduction

Loss or disrupted expression of the FMR1 gene causes fragile X syndrome (FXS), the most common monogenetic form of autism in humans. Constantin et al BMC Biology (2020) 18:125 example, individuals with FXS display impaired visual-motor functions that are inversely correlated to the expansion number of the trinucleotide repeat mutation in the FMR1 gene [5] These visual impairments are not generalized but appear to be selective to and pervasive in the magnocellular visual processing stream [6,7,8], an anatomically and functionally segregated visual pathway that controls motion perception. Evidence is emerging that the subcortical auditory system underlies auditory sensitivities in FXS and ASD [12, 13], but the fine-scale circuitlevel causes of these sensory phenotypes remain mysterious because of the technical challenges associated with observing functional sensory networks at cellular resolution. Questions such as how localized changes in neural activity are integrated at the scale of entire sensory networks [14] are only beginning to be explored

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.