Abstract
OBJECTIVEIn patients with long-standing diabetes mellitus (DM), there is increasing evidence for abnormal processing of gastrointestinal sensations in the central nervous system. Using magnetic resonance diffusion tensor imaging, we characterized brain microstructure in areas involved in visceral sensory processing and correlated these findings to clinical parameters.RESEARCH DESIGN AND METHODSTwenty-six patients with DM and gastrointestinal symptoms and 23 healthy control subjects were studied in a 3T scanner. The apparent diffusion coefficient (i.e., diffusivity of water) and fractional anisotropy (FA) (i.e., organization of fibers) were assessed in the “sensory matrix” (cingulate cortex, insula, prefrontal and secondary sensory cortex, amygdala, and corona radiata) and in corpus callosum.RESULTSPatients had decreased FA values compared with control subjects in 1) all areas (P = 0.025); 2) anterior (P < 0.001), mid- (P = 0.001), and posterior (P < 0.001) cingulate cortex; 3) prefrontal cortex gray matter (P < 0.001); 4) corona radiata (P < 0.001); 5) secondary sensory cortex (P = 0.008); and 6) anterior white matter (P = 0.045), anterior gray matter (P = 0.002), and posterior gray matter (P = 0.002) insula. No difference was found in corpus callosum (P > 0.05). The microstructural changes in some areas correlated with clinical parameters such as bloating (anterior insula), mental well-being (anterior insula, prefrontal cortex, and mid-cingulated and corona radiata), autonomic function based on electrocardiographic results (posterior insula and anterior cingulate), and presence of gastroparesis (anterior insula).CONCLUSIONSThe findings of this explorative study indicate that microstructural changes of brain areas involved in visceral sensory processing are associated with autonomic dysfunction and therefore may be involved in the pathogenesis of gastrointestinal symptoms in DM patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.