Abstract

BackgroundProper neuronal function is directly dependent on the composition, turnover, and amount of interstitial fluid that bathes the cells. Most of the interstitial fluid is likely to be derived from ion and water transport across the brain capillary endothelium, a process that may be altered in hypertension due to vascular pathologies as endothelial dysfunction and arterial remodelling. In the current study, we investigated the effects of hypertension on the brain for differences in the water homeostasis.MethodsMagnetic resonance imaging (MRI) was performed on a 7T small animal MRI system on male spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) of 10 months of age. The MRI protocol consisted of T2-weighted scans followed by quantitative apparent diffusion coefficient (ADC) mapping to measure volumes of different anatomical structures and water diffusion respectively. After MRI, we assessed the spatial distribution of aquaporin 4 expression around blood vessels.ResultsMRI analysis revealed a significant reduction in overall brain volume and remarkably higher cerebroventricular volume in SHR compared to WKY. Whole brain ADC, as well as ADC values of a number of specific anatomical structures, were significantly lower in hypertensive animals. Additionally, SHR exhibited higher brain parenchymal water content. Immunohistochemical analysis showed a profound expression of aquaporin 4 around blood vessels in both groups, with a significantly larger area of influence around arterioles. Evaluation of specific brain regions revealed a decrease in aquaporin 4 expression around capillaries in the corpus callosum of SHR.ConclusionThese results indicate a shift in the brain water homeostasis of adult hypertensive rats.

Highlights

  • Proper neuronal function is directly dependent on the composition, turnover, and amount of interstitial fluid that bathes the cells

  • Brain parenchymal cells bathe in the interstitial fluid (ISF), which acts as a medium for both nutrient delivery and waste removal, while providing the ionic environment for neuronal activity

  • Hypertensive rats (SHR) had significantly elevated systolic and diastolic blood pressure levels when compared to the normotensive control animals (WKY)

Read more

Summary

Introduction

Proper neuronal function is directly dependent on the composition, turnover, and amount of interstitial fluid that bathes the cells. Most of the interstitial fluid is likely to be derived from ion and water transport across the brain capillary endothelium, a process that may be altered in hypertension due to vascular pathologies as endothelial dysfunction and arterial remodelling. A well-regulated water homeostasis in the brain is of vital importance for proper neuronal function. The aetiology of hypertensive brain damage is not clear. Both structural and functional changes in the cerebral vasculature such as arterial remodelling, loss of blood–brain barrier (BBB) integrity, and endothelial dysfunction have been described [6]. While a number of cerebrovascular pathologies have been associated with high blood pressure, the mechanisms by which hypertension contributes to brain damage are still not fully understood

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.