Abstract

Belowground carbon (C) dynamics of terrestrial ecosystems play an important role in the global C cycle and thereby in climate regulation. Globally, land-use change is a major driver of changes in belowground C storage. The emerging bioenergy industry is likely to drive widespread land-use changes, including the replacement of annually tilled croplands with perennial bioenergy crops, and thereby to impact the climate system through alteration of belowground C dynamics. Mechanistic understanding of how land-use changes impact belowground C storage requires elucidation of changes in belowground C flows; however, altered belowground C dynamics following land-use change have yet to be thoroughly quantified through field measurements. Here, we show that belowground C cycling pathways of establishing perennial bioenergy crops (0- to 3.5-year-old miscanthus, switchgrass, and a native prairie mix) were substantially altered relative to row crop agriculture (corn-soy rotation); specifically, there were substantial increases in belowground C allocation (>400%), belowground biomass (400–750%), root-associated respiration (up to 2,500%), moderate reductions in litter inputs (20–40%), and respiration in root-free soil (up to 50%). This more active root-associated C cycling of perennial vegetation provides a mechanism for observed net C sequestration by these perennial ecosystems, as well as commonly observed increases in soil C under perennial bioenergy crops throughout the world. The more active root-associated belowground C cycle of perennial vegetation implies a climate benefit of grassland maintenance or restoration, even if biomass is harvested annually for bioenergy production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.