Abstract

The neuronal mechanisms that underlie deficits in effort cost computation in schizophrenia (SZ) are poorly understood. Given the role of frontostriatal circuits in valence-oriented motivation, we hypothesized that these circuits are either dysfunctional in SZ or do not appropriately predict behavior in SZ when task conditions are difficult and good performance is rewarded. A total of 52 people with recent onset SZ-spectrum disorders and 48 healthy controls (HCs) performed a 3T fMRI task with 2 valence conditions (rewarded vs neutral) and 2 difficulty conditions. Frontostriatal connectivity was extracted during the cue (anticipatory) phase. Individual behavior was fit using a drift-diffusion model, allowing the performance parameter, drift rate (DR), to vary between task conditions. Three models were examined: A group × condition model of DR, a group × condition model of connectivity, and a regression model of connectivity predicting DR depending on group and condition. DRs showed the expected positive correlation with accuracy and a negative association with reaction time. The SZ group showed a deficit in DR but did not differ in overall connectivity or show a valence-specific deficit in connectivity. Significant group × valence × difficulty interactions, however, were observed on the relationship between right dorsolateral prefrontal (DLPFC)-striatal connectivity and DR (DLPFC-Caudate: F = 10.92, PFDR = .004; DLPFC-Putamen: F = 5.14, PFDR = .048) driven by more positive relationships between DR and connectivity during cues for the difficult-rewarded condition in HCs compared to SZ. These findings suggest that frontostriatal connectivity is less predictive of performance in SZ when task difficulty is increased and a reward incentive is applied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call