Abstract

Real-time functional MRI neurofeedback (rtfMRI-NF) is a noninvasive technique that extracts concurrent brain states and provides feedback to subjects in an online method. Our study aims to investigate the effect of rtfMRI-NF on amygdala-based emotion self-regulation by analyzing resting-state functional connectivity. We conducted a task experiment to train subjects in self-regulating amygdala activity in response to emotional stimuli. Twenty subjects were divided into two groups. The up-regulate group (URG) viewed positive stimulus, while the down-regulate group (DRG) viewed negative stimulus. The rtfMRI-NF experiment paradigm consisted of three conditions. The URG's percent amplitude fluctuation (PerAF) scores are significant, indicating that positive emotions may be a partial side effect, with increased activity in the left hemisphere. Resting-state functional connectivity was analyzed via a paired-sample t-test before and after neurofeedback training. Brain network properties and functional connectivity analysis showed a significant difference between the default mode network (DMN) and the brain region associated with the limbic system. These results reveal to some extent the mechanism of neurofeedback training to improve individuals' emotional regulate regulation ability. Our study has shown that rtfMRI-neurofeedback training can effectively enhance the ability to voluntarily control brain responses. Furthermore, the results of the functional analysis have revealed distinct changes in the amygdala functional connectivity circuits following rtfMRI-neurofeedback training. These findings may suggest the potential clinical applications of rtfMRI-neurofeedback as a new therapy for emotionally related mental disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.