Abstract

Portal hypertension (PHT) is characterized by splanchnic hyperemia due to a reduction in mesenteric vascular resistance. We hypothesized that alterations in the activity of a guanine-nucleotide regulatory protein (G-protein) might be partially responsible for the marked circulatory disturbances observed in PHT. We, therefore, determined alterations in adenylyl cyclase/cAMP system in prehepatic portal hypertensive rabbits and correlated these changes to the activity of a G-protein. Basal and G-protein-stimulated adenylyl cyclase activities were lower in the PHT superior mesenteric artery (22-26%) and thoracic aorta (31-46%) membranes, but higher (178-321%) in portal vein. The functional activity of Gi alpha proteins (pertussis toxin-catalyzed ADP-dependent ribosylation) increased in the PHT superior mesenteric artery and thoracic aorta, but decreased in portal vein. Immunodetection revealed an increase in the Gi alpha protein subunits (Gi alpha 1/Gi alpha 2 and Gi alpha 3/Go alpha) in PHT thoracic aorta, without any change in Gs alpha proteins; and a decrease in the amount of Gi alpha proteins in PHT portal vein. There was no change in the amount of Gs alpha/Gi alpha in the PHT superior mesenteric artery. We conclude the hemodynamic alterations of PHT are associated with intrinsic alterations in G-protein-enzyme effector systems. These alterations are vessels specific and suggest a possible unique global derangement underlying the vasculopathy of PHT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.