Abstract
Anterior cruciate ligament (ACL) injuries are one of the most common and potentially debilitating sports injuries. Approximately 70% of ACL injuries occur without contact and are believed to be preventable. Jump stop movements are associated with many non-contact ACL injuries. It was hypothesized that an athlete performing a jump stop movement can reduce their peak tibial shear force (PTSF), a measure of ACL loading, without compromising performance, by modifying their knee flexion angle, shank angle, and foot contact location during landing. PTSF was calculated for fourteen female basketball players performing jump stops using their normal mechanics and mechanics modified to increase their knee flexion angle, decrease their shank angle relative to vertical and land more on their toes during landing. Every subject tested experienced drastic reductions in their PTSF (average reduction=56.4%) using modified movement mechanics. The athletes maintained or improved their jump height with the modified movement mechanics (an average increase in jump height of 2.5cm). The hypothesis was supported: modifications to jump stop movement mechanics greatly reduced PTSF and therefore ACL loading without compromising performance. The results from this study identify crucial biomechanical quantities that athletes can easily modify to reduce ACL loading and therefore should be targeted in any physical activity training programs designed to reduce non-contact ACL injuries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.