Abstract
Due to heightened level of neuroplasticity, there is a sensitive period (2–4 years after birth) that exists for optimal central auditory development. Using diffusion tensor imaging combined with resting-state functional connectivity (rsFC) analysis, this study directly investigates the structural connectivity alterations of the whole brain white matter (WM) and the functional reorganization of the auditory network in infants with sensorineural hearing loss (SNHL) during the early sensitive period. 46 bilateral profound SNHL infants prior to cochlear implantation (mean age, 17.59 months) and 33 healthy controls (mean age, 18.55 months) were included in the analysis. Compared with controls, SNHL infants showed widespread WM alterations, including bilateral superior longitudinal fasciculus, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, right corticospinal tract, posterior thalamic radiation and left uncinate fasciculus. Moreover, SNHL infants demonstrated increased rsFC between left/right primary auditory cortex seeds and right insula and superior temporal gyrus. In conclusion, this study suggests that SNHL in the early sensitive period is associated with diffuse WM alterations that mainly affect the auditory and language pathways. Furthermore, increased rsFC in areas mainly associated with auditory and language networks may potentially reflect reorganization and compensatory activation in response to auditory deprivation during the early sensitive period.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.