Abstract

Animal models treated with agricultural chemicals, such as rotenone, reproduce several degenerative features of human central nervous system (CNS) diseases. Glutamate is the most abundant excitatory amino acid transmitter in the mammalian central nervous system and its transmission is implicated in a variety of brain functions including mental behavior and memory. Dysfunction of glutamate neurotransmission in the CNS has been associated with a number of human neurodegenerative diseases, either as a primary or as a secondary factor in the excitotoxic events leading to neuronal death. Since many human CNS disorders do not arise spontaneously in animals, characteristic functional changes have to be mimicked by toxic agents. Candidate environmental toxins bearing any direct or indirect effects on the pathogenesis of human disease are particularly useful. The present longitudinal Magnetic Resonance Imaging (MRI) studies show, for the first time, significant variations in the properties of brain ventricles in a rotenone-treated (2 mg/kg) mouse model over a period of 4 weeks following 3 days of rotenone treatment. Histopathological analysis reveals death of stria terminalis neurons following this short period of rotenone treatment. Furthermore, in vivo voxel localized 1H MR spectroscopy also shows for the first time significant bio-energetic and metabolic changes as well as temporal alterations in the levels of glutamate in the degenerating striatal region. These studies provide novel insights on the effects of environmental toxins on glutamate and other amino acid neurotransmitters in human neurodegenerative diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.