Abstract

Background/objectivesHighly palatable food (HPF), which is enriched in simple sugars and saturated fat, contributes to obesity and insulin resistance in humans. These metabolic changes are associated with serious complications of the central nervous system, including an elevated risk of cognitive dysfunction. We, herein, treated rats with HPF and then examined the insulin-signaling pathway, in particular, the levels of phosphatidylinositol-3 kinase (PI3K), Akt, and insulin receptor substrate-1 (IRS-1) in the hippocampus and hypothalamus.MethodsAdult Wistar rats fed with HPF (heated or not during preparation) for 4 months and then measured the levels of PI3K, Akt, and IRS-1 in the hippocampus and hypothalamus, by western blotting and quantitative real-time polymerase chain reaction.ResultsWe observed changes in body weight, glucose intolerance, and lipidemia, confirming that peripheral metabolic alterations were induced using this model. Hippocampal PI3K and hypothalamic Akt were affected in rats that are submitted to chronic exposure to an HPF diet. Moreover, heated HPF caused differentiated alterations in the regulatory subunit of PI3K in the hippocampus.DiscussionOur data suggest that this diet alters insulin signaling differentially in each brain region, and that hippocampal changes induced by this diet could contribute to the understanding of cognitive impairments that are dependent on the hippocampus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.