Abstract

BackgroundAltered monocyte NF-κB signaling is a possible cause of inflammaging and driver of aging, however, evidence from human aging studies is sparse. We assessed monocyte NF-κB signaling across different aging trajectories by comparing healthy older adults to older adults with a recent emergency department (ED) admission and to young adults.MethodsWe used data from: 52 older (≥65 years) Patients collected upon ED admission and at follow-up 30-days after discharge; 52 age- and sex-matched Older Controls without recent hospitalization; and 60 healthy Young Controls (20–35 years). Using flow cytometry, we assessed basal NF-κB phosphorylation (pNF-κB p65/RelA; Ser529) and induction of pNF-κB following stimulation with LPS or TNF-α in monocytes. We assessed frailty (FI-OutRef), physical and cognitive function, and plasma levels of IL-6, IL-18, TNF-α, and soluble urokinase plasminogen activator receptor.ResultsPatients at follow-up were frailer, had higher levels of inflammatory markers and decreased physical and cognitive function than Older Controls. Patients at follow-up had higher basal pNF-κB levels than Older Controls (median fluorescence intensity (MFI): 125, IQR: 105–153 vs. MFI: 80, IQR: 71–90, p < 0.0001), and reduced pNF-κB induction in response to LPS (mean pNF-κB MFI fold change calculated as the log10 ratio of LPS-stimulation to the PBS-control: 0.10, 95% CI: 0.08 to 0.12 vs. 0.13, 95% CI: 0.10 to 0.15, p = 0.05) and TNF-α stimulation (0.02, 95% CI: − 0.00 to 0.05 vs. 0.10, 95% CI: 0.08 to 0.12, p < 0.0001). Older Controls had higher levels of inflammatory markers than Young Controls, but basal pNF-κB MFI did not differ between Older and Young Controls (MFI: 81, IQR: 70–86; p = 0.72). Older Controls had reduced pNF-κB induction in response to LPS and TNF-α compared to Young Controls (LPS: 0.40, 95% CI: 0.35 to 0.44, p < 0.0001; and TNF-α: 0.33, 95% CI: 0.27 to 0.40, p < 0.0001). In Older Controls, basal pNF-κB MFI was associated with FI-OutRef (p = 0.02).ConclusionsIncreased basal pNF-κB activity in monocytes could be involved in the processes of frailty and accelerated aging. Furthermore, we show that monocyte NF-κB activation upon stimulation was impaired in frail older adults, which could result in reduced immune responses and vaccine effectiveness.

Highlights

  • Altered monocyte Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling is a possible cause of inflammaging and driver of aging, evidence from human aging studies is sparse

  • Increased basal Phosphorylated NF-κB (pNF-κB) activity in monocytes could be involved in the processes of frailty and accelerated aging

  • We show that monocyte NF-κB activation upon stimulation was impaired in frail older adults, which could result in reduced immune responses and vaccine effectiveness

Read more

Summary

Introduction

Altered monocyte NF-κB signaling is a possible cause of inflammaging and driver of aging, evidence from human aging studies is sparse. Many studies have shown associations between this state of chronic inflammation and the development of frailty and most age-related chronic diseases including cancer, diabetes, cardiovascular and neurodegenerative disease [2,3,4,5]. In parallel with chronic inflammation, aging is associated with immunosenescence, i.e. the age-related decline in immune function [8]. Immunosenescence is thought to result in increased susceptibility to infections, a common cause of acute hospitalization and mortality in older adults [12,13,14]. We collected data on aging measures, including frailty, physical and cognitive function.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call