Abstract

To investigate whether the alterations of microtubule and microfilament expression are responsible for the neurotoxicity of carbon disulfide. Wistar rats were administered with carbon disulfide by gavage at a dosage of 300 or 500 mg/kg for continuous 12 weeks (five times per week). Spinal cords of carbon disulfide-intoxicated rats and their age-matched controls were Triton-extracted and ultracentrifuged to yield a pellet and a corresponding supernatant fraction. Then, the contents of alpha-tubulin, beta-tubulin, and beta-actin in both fractions were determined by immunoblotting. In the meantime, their mRNA levels in spinal cords were quantified using reverse transcriptase-polymerase chain reaction (RT-PCR). In the supernatant fraction, the contents of beta-tubulin and beta-actin in both treated groups increased significantly (P < 0.01) the content of beta-tubulin increased by 141% and 158% respectively, and the content of beta-actin increased by 19% and 32% respectively. In the pellet fraction, the content of beta-tubulin in both groups increased by 107%(P < 0.01) and 118%(P < 0.01) respectively, and the others keep unaffected. In the meantime, the levels of of mRNA expression of beta-tubulin and beta-actin gene were elevated consistently in CS(2)-treated groups (P < 0.01) the levels of mRNA expression of beta-tubulin increased by 207% and 212% respectively, and the levels of mRNA expression of beta-actin increased by 94% and 91% respectively. Carbon disulfide intoxication results in alternations of microtubule and microfilament expression, and the alternations might be related to its neurotoxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call