Abstract

Liver X receptor (LXR) α and β are nuclear receptors that are crucial for the regulation of carbohydrate and lipid metabolism. Activation of LXRs in the brain facilitates cholesterol clearance and improves cognitive deficits, thus they are considered as promising drug targets to treat diseases such as atherosclerosis and Alzheimer's disease. Nevertheless, little is known about the function and localization of LXRs in the brain. Here, we studied the expression of LXR in the brains of rats that received free access to 10% (w/v) fructose group (FG) in their beverages or water control drinks (control group (CG)). After 6 weeks rats in the FG presented with hypertriglyceridemia, hyperinsulinemia, and became glucose intolerant, suggesting a progression toward type 2 diabetes. We found that hypothalamic LXR expression was altered in fructose-fed rats. Rats in the FG presented with a decrease in LXRβ levels while showing an increase in LXRα expression in the hypothalamus but not in the hippocampus, cerebellum, or neocortex. Moreover, both LXRα and β expression correlated negatively with insulin and triglyceride levels. Interestingly, LXRβ showed a negative correlation with the area under the curve during the glucose tolerance test in the CG and a positive correlation in the FG. Immunocytochemistry revealed that the paraventricular and ventromedial nuclei express mainly LXRα whereas the arcuate nucleus expresses LXRβ. Both LXR immunosignals were found in the median preoptic area. This is the first study showing a relationship between glucose and lipid homeostasis and the expression of LXRs in the hypothalamus, suggesting that LXRs may trigger neurochemical and neurophysiological responses for the control of food intake and energy expenditure through these receptors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.