Abstract

Non-medical use of prescription opioids such as the mu opioid receptor (MOP-r) agonist oxycodone is a growing problem in the USA and elsewhere. There is limited information about oxycodone's impact on diverse gene systems in the brain. The current study was designed to examine how chronic oxycodone self-administration (SA) affects gene expression in the terminal areas of the nigrostriatal and mesolimbic dopaminergic pathways in mice. Adult male C57BL/6J mice underwent a 14-day oxycodone self-administration procedure (4h/day, 0.25mg/kg/infusion, FR1) and were euthanized 1h after the last session. The dorsal and ventral striata were dissected, and total RNAs were extracted. Gene expressions were examined using RNA sequencing. We found that oxycodone self-administration exposure led to alterations of expression in numerous genes related to inflammation/immune functions in the dorsal striatum (54 upregulated genes and 1 downregulated gene) and ventral striatum (126 upregulated genes and 15 downregulated genes), with 38 upregulated genes identified in both brain regions. This study reveals novel neurobiological mechanisms underlying some of the effects of a commonly abused prescription opioid. We propose that inflammation/immune gene systems may undergo a major change during chronic self-administration of oxycodone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.