Abstract

The molecular basis of selective neuronal vulnerability in Alzheimer's disease (AD) remains poorly understood. Using basal forebrain cholinergic neurons (BFCNs) as a model and immunohistochemistry, we have demonstrated significant age-related loss of the calcium-binding protein calbindin-D28K (CB) from BFCN, which was associated with tangle formation and degeneration in AD. Here, we determined alterations in RNA and protein for CB and the Ca2+-responsive proteins Ca2+/calmodulin-dependent protein kinase I (CaMKI), growth-associated protein-43 (GAP43), and calpain in the BF. We observed progressive downregulation of CB and CaMKI RNA in laser-captured BFCN in the normal-aged-AD continuum. We also detected progressive loss of CB, CaMKIδ, and GAP43 proteins in BF homogenates in aging and AD. Activated μ-calpain, a calcium-sensitive protease that degrades CaMKI and GAP43, was significantly increased in the normal aged BF and was 10 times higher in AD BF. Overactivation of μ-calpain was confirmed using proteolytic fragments of its substrate spectrin. Substantial age- and AD-related alterations in Ca2+-sensing proteins most likely contribute to selective vulnerability of BFCN to degeneration in AD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.