Abstract

It is known that orthodontic forces induce discomfort and/or abnormal sensation after application of an orthodontic appliance in patients, suggesting the adaptation of periodontal neural elements to environmental changes. However, no morphological data have been provided. The present study investigated, by immunoelectron microscopy, the localization of growth-associated protein-43 (GAP-43) in periodontal Ruffini endings in rat molars during experimental tooth movement. In the untreated control group, immunoelectron microscopy demonstrated that GAP-43-like immunoreactivity in the Ruffini endings was confined to the Schwann sheaths around the axon terminals, and was in neither the cell bodies of terminal Schwann cells nor the axon terminals themselves. Immunoelectron microscopic observation revealed alterations in the localization of GAP-43-like immunoreactivity in the periodontal Ruffini endings during experimental tooth movement. After 1 day of treatment, the cell bodies of the terminal Schwann cells associated with Ruffini endings appeared to contain immunoreaction products for GAP-43, and retained GAP-43-like immunoreactivity during tooth movement. From 5 to 7 days, a major population of the axoplasm of the periodontal Ruffini endings, which was immunonegative in control, filled the GAP-43 immunoreactions, showing a tendency to decrease in number later, and disappeared completely at 14 days. These findings suggest that orthodontic forces easily induce the remodeling of the mechanoreceptive Ruffini endings as well as the active tissue remodeling in a close relationship. Since the ultrastructural localization of GAP-43-like immunoreactivity was drastically changed in the Ruffini endings during tooth movement, GAP-43 functions as one of the key molecules in the remodeling of mechanoreceptive Ruffini endings during tooth movement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call