Abstract
Background:Endotoxin tolerance (ET) is a protective phenomenon in which pre-treatment with a tolerance dose of lipopolysaccharide (LPS) leads to dramatically elevated survival. Accumulating evidence has shown that peripheral T cells contribute to the induction of ET. However, what happens to T cell development in the thymus under ET conditions remains unclear. The purpose of this study was to analyze the alterations in thymocyte populations (double-positive [DP] and single-positive [SP] cells) under ET conditions.Methods:Mice were intraperitoneally injected with LPS at a concentration of 5 mg/kg to establish an LPS tolerance model and were divided into two groups: a group examined 72 h after LPS injection (72-h group) and a group examined 8 days after LPS injection (8-day group). Injection of phosphate-buffered saline was used as a control (control group). Changes in thymus weight, cell counts, and morphology were detected in the three groups. Moreover, surface molecules such as CD4, CD8, CD44, CD69, and CD62L were analyzed using flow cytometry. Furthermore, proliferation, apoptosis, cytokine production, and extracellular signal-regulated kinase (ERK) pathway signaling were analyzed in thymocyte populations. The polymorphism and length of the T-cell receptor (TCR) β chain complementarity-determining region 3 (CDR3) were analyzed using capillary electrophoresis DNA laser scanning analysis (ABI 3730).Results:Thymus weight and cell counts were decreased in the early stage but recovered by the late stage in a murine model of LPS-induced ET. Moreover, the proportions of DP cells (control: 72.130 ± 4.074, 72-h: 10.600 ± 3.517, 8-day: 84.770 ± 2.228), CD4+ SP cells (control: 15.770 ± 4.419, 72-h: 44.670 ± 3.089, 8-day: 6.367 ± 0.513), and CD8+ SP cells (control: 7.000 ± 1.916, 72-h: 34.030 ± 3.850, 8-day: 5.133 ± 0.647) were obviously different at different stages of ET. The polymorphism and length of TCR β chain CDR3 also changed obviously, indicating the occurrence of TCR rearrangement and thymocyte diversification. Further analysis showed that the expression of surface molecules, including CD44, CD69, and CD62L, on thymocyte populations (DP and SP cells) were changed to different degrees. Finally, the proliferation, apoptosis, cytokine production, and ERK pathway signaling of thymocyte populations were changed significantly.Conclusion:These data reveal that alterations in thymocyte populations might contribute to the establishment of ET.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.