Abstract

Silicosis resulting from silica exposure is a global occupational disease characterized by severe pathological changes in progressive pulmonary fibrosis. Previous evidence has indicated that dysbiosis of the gut microbiota occurs after environmental dust exposure and is associated with certain diseases. The aims of this study are to elucidate the compositional and functional characteristics of the gut microbiota in early-stage silicosis and to understand their influence on pulmonary fibrosis. We investigated the gut microbial composition of fecal samples from 18 patients and 21 healthy subjects using 16S rRNA gene sequencing technology. Compared with the healthy subjects, reductions in the levels of Firmicutes and Actinobacteria were noted in patients with silicosis and progressive pulmonary fibrosis, as well as lower levels of Devosia, Clostridiales, AlloprevotellaandRikenellaceae_RC9. Lachnospiraceae and Lachnoclostridium levels were increased in patients with silicosis. GOC and KEGG analyses were used to predict that certain bacteria taxa play critical roles in the development of pulmonary fibrosis, including posttranslational modification, amino acid transport and metabolism, nucleotide transport and metabolism, and ribosomal structure and biogenesis. KEGG analysis showed that certain taxa participate in various roles including cancer, endocrine metabolism, immune system, signaling molecules and interaction, and transcription. Collectively, in this pilot study, microbiota changes have been represented in the gut of patients with silicosis. Although this change in gut microbiota have been represented, caution is needed when interpreting the findings since this is observational finding, not necessarily causative. More studies should be performed in the expanding population to be verified and more studies underlying biological mechanisms for better understanding the relationship between gut microbiota and development of pulmonary fibrosis in patients with silicosis.

Highlights

  • Silicosis, an occupational progressive fibrotic pulmonary disorder induced by inhaling free silicon dioxide or silica, is a public health concern that occurs commonly in many chemical and physical industries such as petroleum industries and iron and steel enterprises worldwide [1,2,3]

  • Barcik et al investigated the diversity of the gut microbiota in fecal samples obtained from healthy individuals and asthma patients; the results indicated that some bacterial strains are partially responsible for enhancing histamine secretion, with Escherichia coli and Morganella morganii significantly elevated in the gut microbiome of patients with asthma [15]

  • Gut microbial diversity in patients with silicosis compared with healthy subjects To explore whether patients with silicosis exhibit differences in their gut microbiota compared with healthy subjects, the DNA from fecal samples was sequenced and assessed using IM_TORNEDO [26]

Read more

Summary

Introduction

An occupational progressive fibrotic pulmonary disorder induced by inhaling free silicon dioxide or silica, is a public health concern that occurs commonly in many chemical and physical industries such as petroleum industries and iron and steel enterprises worldwide [1,2,3]. It was hypothesized that occupational exposure to silica modifies the composition of gut microbiota, which in turn is associated with progressive pulmonary fibrosis in patients with silicosis. To test this hypothesis, we performed microarray analysis of the fecal microbiota from patients with silicosis and from healthy individuals using 16S ribosomal RNA gene sequencing. Our results showed that patients with silicosis have a gut microbiota community profile distinct from that of healthy individuals. This knowledge may be useful for early diagnosis of silicosis and for developing a method to inhibit the pulmonary fibrosis

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call