Abstract

Recent studies had shown that gut microbiota played a significant role in the development of the immune system and may affect the course of airway allergic disease. We conducted this study to determine unique gut microbial associated with allergic disease in children by shotgun gene sequencing. We collected fecal samples from children with allergic asthma (n = 23) and allergic rhinitis (n = 18), and healthy control (n = 19). The gut microbiota of specimens was analyzed by high-throughput metagenomic shotgun gene sequencing. The intestinal microbiota of children with allergic asthma and allergic rhinitis was characterized by increased microbial richness and diversity. Simpson and Shannon were significantly elevated in children with allergic asthma. Principal coordinates analysis (PCoA) showed that the gut microbial communities cluster patterns of children with asthma or rhinitis were significantly different from those of healthy controls. However, no significant difference was found between asthma group and rhinitis group At the phylum level, higher relative abundance of Firmicutes was found in the allergic rhinitis group and allergic asthma group, while the level of Bacteroidetes was significantly lower. At the genus level, Corynebacterium, Streptococcus, Dorea, Actinomyces, Bifidobacterium, Blautia, and Rothia were significantly enriched in the allergic asthma group. Finally, a random forest classifier model selected 16 general signatures to discriminate the allergic asthma group from the healthy control group. In conclusion, children in the allergic rhinitis group and allergic asthma group had altered gut microbiomes in comparison with the healthy control group. Compared to healthy children, the gut microbiome in children with allergic diseases has higher pro-inflammatory potential and increased production of pro-inflammatory molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.