Abstract

Pluripotent embryonal carcinoma cells can be triggered to differentiate in vitro by allowing them to form multicellular aggregates. Nullipotent embryonal carcinoma cells form aggregates, but further development is blocked. Pluripotent and nullipotent embryonal carcinoma cell lines were co-cultured to form mixed aggregates in order to determine whether a developmental signal produced by the pluripotent cell could induce the nullipotent cells to differentiate. Unlike pure pluripotent cell aggregates, aggregates from cultures initiated with a 1:1 mixture of pluripotent (PSA-1) and nullipotent (F9) cells formed endoderm but failed to differentiate further. The nullipotent cells did not produce a detectable soluble inhibitor of differentiation. A hypoxanthine phosphoribosyltransferase-deficient subclone of the nullipotent cell line was used so that the fate of both nullipotent and pluripotent cells could be followed in autoradiographs of histological sections of aggregates labeled with 3H-hypoxanthine. Seven day old aggregates of pure pluripotent cell cultures contained endoderm, ectoderm and embryonal carcinoma cells. On the other hand, in 7 day old mixed cell aggregates, almost all the pluripotent cells became endoderm located on the outer surface of the aggregate. The nullipotent cells in the mixed aggregates assumed an internal position and remained embryonal carcinoma cells. Following the efficiency of plating of pluripotential cells in pure and mixed aggregates as a function of time showed that viable pluripotent embryonal carcinoma cells were lost at a 10 fold greater rate in mixed cell aggregates than in pure pluripotent cell aggregates. We conclude that nullipotent embryonal carcinoma cells in mixed aggregates with pluripotent cells exert a limitation on the ability of these pluripotent cells to differentiate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call