Abstract

Severe hyperbilirubinemia causes neurological damage both in humans and rodents. The hyperbilirubinemic Gunn rat shows a marked cerebellar hypoplasia. More recently bilirubin ability to arrest the cell cycle progression in vascular smooth muscle, tumour cells, and, more importantly, cultured neurons has been demonstrated. However, the involvement of cell cycle perturbation in the development of cerebellar hypoplasia was never investigated before. We explored the effect of sustained spontaneous hyperbilirubinemia on cell cycle progression and apoptosis in whole cerebella dissected from 9 day old Gunn rat by Real Time PCR, Western blot and FACS analysis. The cerebellum of the hyperbilirubinemic Gunn rats exhibits an increased cell cycle arrest in the late G0/G1 phase (p < 0.001), characterized by a decrease in the protein expression of cyclin D1 (15%, p < 0.05), cyclin A/A1 (20 and 30%, p < 0.05 and 0.01, respectively) and cyclin dependent kinases2 (25%, p < 0.001). This was associated with a marked increase in the 18 kDa fragment of cyclin E (67%, p < 0.001) which amplifies the apoptotic pathway. In line with this was the increase of the cleaved form of Poly (ADP-ribose) polymerase (54%, p < 0.01) and active Caspase3 (two fold, p < 0.01). These data indicate that the characteristic cerebellar alteration in this developing brain structure of the hyperbilirubinemic Gunn rat may be partly due to cell cycle perturbation and apoptosis related to the high bilirubin concentration in cerebellar tissue mainly affecting granular cells. These two phenomena might be intimately connected.

Highlights

  • Crigler-Najjar Syndrome type I (CNI) is a rare deficiency of bilirubin UDP-glucuronosyl-transferase 1A1 (UGT1A1) activity caused by mutations of the UGT1A1 gene[1,2]

  • The expression of Cyclin D1 and Cyclin A (S phase transition) mRNA was reduced (20% and 15%, respectively) in cerebella of jj rats, whereas Cyclin A1 and cyclin-dependent kinase 2 (Cdk2) mRNA levels were comparable to controls

  • The proliferation of granular precursor cells in the external granular layer is the dominant event in the rodent cerebellar growth early after birth [38,39], rendering this structure vulnerable to bilirubin toxicity and suggesting a link between cell cycle perturbations and the typical cerebellar hypoplasia of the jj Gunn rat [13]

Read more

Summary

Introduction

Crigler-Najjar Syndrome type I (CNI) is a rare deficiency of bilirubin UDP-glucuronosyl-transferase 1A1 (UGT1A1) activity caused by mutations of the UGT1A1 gene[1,2]. The inability to effectively conjugate unconjugated bilirubin (UCB), results in massive deposition of the pigment in tissues, notably causing neuronal loss in selected structures of the central nervous system early in infancy [3,4,5]. The homozygous (jj) hyperbilirubinemic Gunn rat [6], manifest an inherited absence of the UDP-glucuronosyltransferase (Ugt1a1) enzyme activity, due to a spontaneous point mutation in the Ugt1a1 gene, leading to a truncatedinactive protein. With similar (to humans) inability to effectively conjugate and excrete bilirubin and central neurological damage, it has been used as an animal model of CNI and neonatal jaundice [7,8,9]. Similar findings of bilirubin toxicity to cerebellum have been documented in humans [3,18,19]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call