Abstract

One approach to increasing secondary metabolite production in plant cell culture is to manipulate metabolic pathways to utilize more resources toward production of one desired compound or class of compounds, such as diverting carbon flux from competing secondary pathways. Since phenylalanine provides both the phenylisoserine side chain and the benzoyl moiety at C-2 of Taxol, we speculated that blockage of the phenylpropanoid pathway might divert phenylalanine into Taxol biosynthesis. We used specific enzyme inhibitors to target the first enzyme in the phenylpropanoid pathway, phenylalanine ammonia lyase (PAL), the critical control point for conversion of L-phenylalanine to trans-cinnamic acid. Cinnamic acid acted quickly in reducing PAL activity by 40-50%, without affecting total protein levels, but it generally inhibited the taxane pathway, reducing Taxol by 90% of control levels. Of the taxanes produced, 13-acetyl-9-dihydro-baccatin III and 9-dihydrobaccatin III doubled as a percentage of total taxanes in C93AD and CO93P cells treated with 0.20 and 0.25 mM cinnamic acid, when all other taxanes were lowered. The PAL inhibitor alpha-aminooxyacetic acid (AOA) almost entirely shut down Taxol production at both 0.5 and 1.5 mM, whereas L-alpha-aminooxy-beta-phenylpropionic acid (AOPP) had the opposite effect, slightly enhancing Taxol production at 1 microM but having no effect at 10 microM. The discrepancy in the effectiveness of AOA and AOPP and the lack of effect with addition of phenylalanine or benzoic acid derivatives further indicates that the impact of cinnamic acid on Taxol is related not to its effect on PAL but rather to a specific effect on the taxane pathway. On the basis of these results, a less direct route for inhibiting the phenylpropanoid pathway may be required to avoid unwanted side effects and potentially enhance Taxol production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call